OpenJudge

38:计算多项式的导函数

总时间限制:
1000ms
内存限制:
65536kB
描述

计算多项式的导函数是一件非常容易的任务。给定一个函数f(x),我们用f'(x)来表示其导函数。我们用x^n来表示xn次幂。为了计算多项式的导函数,你必须知道三条规则:

(1)(C)' = 0 如果C是常量

(2)(C*x^n)' = C*n*x^(n-1) 如果n >= 1C是常量

(3)(f1(x)+f2(2))' = f1'(x)+f2'(x)

容易证明,多项式的导函数也是多项式。

现在,请你编写一个程序,给定一个不包含负系数且已合并好同幂次项的多项式f(x),计算出它的导函数。

输入
输入有两行。
第一行是一个整数n(0 <= n <= 100)表明多项式的最高次幂为n。
第二行包含n+1个非负整数,Cn ,Cn-1 ,Cn-2 ,Cn-3 ,Cn-4 ,… ,C1,C0(0 <= Ci <= 1000)且Cn != 0。Ci是幂次为i的项的系数。
输出
在一行内输出f'(x)的结果。
(1) 如果g(x) = 0那么直接输出0
(2) 如果g(x)形如Cm(x^m)+Cm-1(x^(m-1))+…+C0(Cm!=0)那么输出Cm…C0
(3) 相邻整数之间有单个空格。
样例输入
3
0
10
2
3 2 1
3
10 0 1 2
样例输出
0
6 2
30 0 1
全局题号
4974
添加于
2015-11-25
提交次数
5483
尝试人数
2595
通过人数
2304